
CS361B: Homework 3
Due date: June 3, 2014 at 12:15PM

Maximum Multicimmodity Flow: We are given a graph G(V,E) with capacities u(e) on the

edges, and k pairs of terminals (si, ti), i = 1, 2, . . . , k. The goal is to route flow di from si to ti, so

that
∑k

i=1 di is maximized. (Note that the sets {si} and {ti} might not be disjoint.) We will develop

a combinatorial algorithm for this problem similar to the algorithm for maximum concurrent flow. If

f(P ) denotes the flow along path P , and Qi denotes the set of paths from si to ti, we can formulate

the following positive linear program:

Maximize
k∑

i=1

di

∑
P∈Qi

f(P ) ≥ di ∀i∑
P :e∈P f(P ) ≤ u(e) ∀e ∈ E

f(P ) ≥ 0 ∀P ∈
∪k

i=1Qi

di ≥ 0 ∀i

Problem 3-1. Dual Problem: Formulate the dual of this problem. Use the variables l(e) for the

edge constraints, and the variables disti for the terminal constraints. Define the volume D(l) of the

system as
∑

e l(e)u(e).

1.Show that for the optimal solution, the function l(e) is a metric (in the sense that it is non-

negative and, for all x, y, z ∈ V such that xy ∈ E, l(xy) ≤ cl(xz) + cl(zy), where cl(vw) denotes

the length of the shortest path from v to w when edge lengths are defined by l).

2.Show that for the optimal solution, disti can be set to the shortest path length from si to ti under

the metric l without changing the value of the optimum.

3.Given a metric l, let α(l) denote the minimum distance between terminal pairs. Show that the

dual is effectively minimizing D(l)
α(l) over all length metrics l.

4.Suppose the variables l(e) were constrained to be either 0 or 1. In this case, what problem is the

dual program solving?

Problem 3-2. Complementary Slackness: Write down the primal and dual complementary

slackness constraints. Consider the optimal primal and dual solutions.

1.Show that for P ∈ Qi, where Qi is the set of paths from si to ti, if f(P ) > 0, then the length of

P in metric l is one.

2.Show that if l(e) > 0, then edge e is saturated.

Problem 3-3. The Algorithm: We will solve this problem for the case of unit capacities u(e) = 1.

The algorithm proceeds in iterations. Let li−1 be the length function at the beginning of the ith

iteration, and fi−1 denote the flow routed so far. Let α(i− 1) denote the minimum distance between

terminals in metric li−1, and D(i − 1) denote the volume of the system. Let P be a path of length
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α(i − 1) connecting some terminal pair. We push one unit of flow along P , and for edge e ∈ P , set

li(e) = li−1(e)(1 + ϵ). We stop at the first time t such that α(t) ≥ 1.

Essentially, the algorithm finds the path with minimum capacity violation and pushes one unit of flow

along it. This path is the shortest path using a length function which is exponential in the violation.

Note that ft does not satisfy capacity constraints and is therefore infeasible.

Initially, we set l0(e) = δ for all edges. We will choose δ later. Let β denote the optimal value of the

dual.

Note that α(0) ≤ δn. Also note that fi = i.

1.Show that D(i) = D(0) + ϵ
∑i

j=1 α(j − 1).

2.Consider the length function li− l0, and let α(li− l0) denote the length of the shortest path from

any source to the corresponding sink under this length function. Show that β ≤ D(i)−D(0)
α(li−l0)

, and

conclude that α(i) ≤ δn+ D(i)−D(0)
β .

3.Now show that α(i) ≤ δn(1 + ϵ/β)i. Conclude that α(i) ≤ δneϵi/β.

4.Finally, show that ft = t ≥ β ln(δn)−1

ϵ .

Problem 3-4. Feasible Flow: The algorithm described above could easily violate capacities. Note

that whenever we route one unit of demand through an edge e, we increase its length by a factor of

1 + ϵ.

1.Using the fact that l0(e) = δ, and t is the first time instant for which α(t) ≥ 1, show that the

total flow through e is at most log1+ϵ
1+ϵ
δ .

2.Show that ft
log1+ϵ

1+ϵ
δ

is a feasible flow.

Problem 3-5. Approximation Ratio: Let γ denote the ratio between the optimal dual solution

and the flow we obtain, that is γ = β
ft
log1+ϵ

1+ϵ
δ . Show that for δ = (1+ϵ)((1+ϵ)n)−1/ϵ, γ ≤ (1−ϵ)−2.

Problem 3-6. Running Time: Show that the algorithm described above computes a (1 − ϵ)−2

approximation to max multicommodity flow in time O((m
ϵ2
log n)kTsp), where Tsp is the time taken

to compute single source shortest paths.

Problem 3-7. Optional: Suppose we remove the unit capacity assumption. We modify the algo-

rithm as follows. As before, let P be the shortest path in metric li−1. Let u denote the minimum

capacity edge along this path. We push u units of flow along this path, and for edge e along this path,

set li(e) = li−1(e)(1 + ϵu/u(e)). We terminate at the first time t such that α(t) ≥ 1. The values l0(e)

are set as before. Note that fi is no longer equal to i. Show that after appropriate scaling of the flow

and choice of δ, this algorithm produces a (1− ϵ)−2 approximation to maximum multicommodity flow.
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