CS361B: HOMEWORK 3

Due date: June 3, 2014 at 12:15PM

Maximum Multicimmodity Flow: We are given a graph G(V, E) with capacities u(e) on the
edges, and k pairs of terminals (s;,%;),i = 1,2,...,k. The goal is to route flow d; from s; to ¢;, so
that Y% | d; is maximized. (Note that the sets {s;} and {¢;} might not be disjoint.) We will develop
a combinatorial algorithm for this problem similar to the algorithm for maximum concurrent flow. If
f(P) denotes the flow along path P, and @; denotes the set of paths from s; to t;, we can formulate
the following positive linear program:
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Problem 3-1. Dual Problem: Formulate the dual of this problem. Use the variables [(e) for the
edge constraints, and the variables dist; for the terminal constraints. Define the volume D(l) of the

system as Y . l(e)u(e).

1.Show that for the optimal solution, the function I(e) is a metric (in the sense that it is non-
negative and, for all z,y,z € V such that zy € E, I(zy) < ¢(zz) + ¢(zy), where ¢;(vw) denotes
the length of the shortest path from v to w when edge lengths are defined by 1).

2.Show that for the optimal solution, dist; can be set to the shortest path length from s; to ¢; under
the metric [ without changing the value of the optimum.

3.Given a metric [, let «(l) denote the minimum distance between terminal pairs. Show that the

dual is effectively minimizing % over all length metrics [.

4.Suppose the variables [(e) were constrained to be either 0 or 1. In this case, what problem is the

dual program solving?

Problem 3-2. Complementary Slackness: Write down the primal and dual complementary
slackness constraints. Consider the optimal primal and dual solutions.

1.Show that for P € Q;, where @Q; is the set of paths from s; to t;, if f(P) > 0, then the length of

P in metric [ is one.

2.Show that if I(e) > 0, then edge e is saturated.

Problem 3-3. The Algorithm: We will solve this problem for the case of unit capacities u(e) = 1.
The algorithm proceeds in iterations. Let l;_1 be the length function at the beginning of the ith
iteration, and f;—; denote the flow routed so far. Let a(i — 1) denote the minimum distance between

terminals in metric [;_1, and D(i — 1) denote the volume of the system. Let P be a path of length



a(i — 1) connecting some terminal pair. We push one unit of flow along P, and for edge e € P, set
li(e) =1l;—1(e)(1 + €). We stop at the first time ¢ such that a(t) > 1.

Essentially, the algorithm finds the path with minimum capacity violation and pushes one unit of flow
along it. This path is the shortest path using a length function which is exponential in the violation.
Note that f; does not satisfy capacity constraints and is therefore infeasible.

Initially, we set lp(e) = 0 for all edges. We will choose § later. Let 3 denote the optimal value of the
dual.

Note that «(0) < dn. Also note that f; = i.

1.Show that D(i) = D(0) + 622:1 a(j —1).
2.Consider the length function l; — Iy, and let «(l; —lp) denote the length of the shortest path from

D(i)=D(0)

ali=lo) and

any source to the corresponding sink under this length function. Show that g <

conclude that «(i) < dn + w.

3.Now show that a(i) < dn(1 + ¢/B)". Conclude that (i) < dne/”.
4.Finally, show that f; =1t > M,

Problem 3-4. Feasible Flow: The algorithm described above could easily violate capacities. Note
that whenever we route one unit of demand through an edge e, we increase its length by a factor of
1+e.

1.Using the fact that lo(e) = J, and ¢ is the first time instant for which «(¢) > 1, show that the

total flow through e is at most log; 1;5"6.

2.Show that lofitlﬂ is a feasible flow.
1+€ ~§

Problem 3-5. Approximation Ratio: Let v denote the ratio between the optimal dual solution
and the flow we obtain, that is y = % logy ;. €. Show that for § = (1+€)((L+€)n) V¢, v < (1—€)72.

Problem 3-6. Running Time: Show that the algorithm described above computes a (1 — ¢)~2
approximation to max multicommodity flow in time O((% logn)kTsp), where Tsp is the time taken
to compute single source shortest paths.

Problem 3-7. Optional: Suppose we remove the unit capacity assumption. We modify the algo-
rithm as follows. As before, let P be the shortest path in metric [;_;. Let u denote the minimum
capacity edge along this path. We push « units of flow along this path, and for edge e along this path,
set l;(e) = l;—1(e)(1 + eu/u(e)). We terminate at the first time ¢ such that a(t) > 1. The values ly(e)
are set as before. Note that f; is no longer equal to i. Show that after appropriate scaling of the flow
and choice of ¢, this algorithm produces a (1 —¢)~2 approximation to maximum multicommodity flow.



