CS361B: Homework 3

Due date: June 3, 2014 at 12:15PM
Maximum Multicimmodity Flow: We are given a graph $G(V, E)$ with capacities $u(e)$ on the edges, and k pairs of terminals $\left(s_{i}, t_{i}\right), i=1,2, \ldots, k$. The goal is to route flow d_{i} from s_{i} to t_{i}, so that $\sum_{i=1}^{k} d_{i}$ is maximized. (Note that the sets $\left\{s_{i}\right\}$ and $\left\{t_{i}\right\}$ might not be disjoint.) We will develop a combinatorial algorithm for this problem similar to the algorithm for maximum concurrent flow. If $f(P)$ denotes the flow along path P, and Q_{i} denotes the set of paths from s_{i} to t_{i}, we can formulate the following positive linear program:

$$
\begin{aligned}
& \text { Maximize } \sum_{i=1}^{k} d_{i} \\
& \sum_{P \in Q_{i}} f(P) \geq d_{i} \quad \forall i \\
& \sum_{P: e \in P} f(P) \leq u(e) \quad \forall e \in E \\
& f(P) \geq 0 \quad \forall P \in \bigcup_{i=1}^{k} Q_{i} \\
& d_{i} \geq 0 \quad \forall i
\end{aligned}
$$

Problem 3-1. Dual Problem: Formulate the dual of this problem. Use the variables $l(e)$ for the edge constraints, and the variables dist for the terminal constraints. Define the volume $D(l)$ of the system as $\sum_{e} l(e) u(e)$.
1.Show that for the optimal solution, the function $l(e)$ is a metric (in the sense that it is nonnegative and, for all $x, y, z \in V$ such that $x y \in E, l(x y) \leq c_{l}(x z)+c_{l}(z y)$, where $c_{l}(v w)$ denotes the length of the shortest path from v to w when edge lengths are defined by l).
2.Show that for the optimal solution, dist_{i} can be set to the shortest path length from s_{i} to t_{i} under the metric l without changing the value of the optimum.
3.Given a metric l, let $\alpha(l)$ denote the minimum distance between terminal pairs. Show that the dual is effectively minimizing $\frac{D(l)}{\alpha(l)}$ over all length metrics l.
4.Suppose the variables $l(e)$ were constrained to be either 0 or 1 . In this case, what problem is the dual program solving?

Problem 3-2. Complementary Slackness: Write down the primal and dual complementary slackness constraints. Consider the optimal primal and dual solutions.
1.Show that for $P \in Q_{i}$, where Q_{i} is the set of paths from s_{i} to t_{i}, if $f(P)>0$, then the length of P in metric l is one.
2.Show that if $l(e)>0$, then edge e is saturated.

Problem 3-3. The Algorithm: We will solve this problem for the case of unit capacities $u(e)=1$. The algorithm proceeds in iterations. Let l_{i-1} be the length function at the beginning of the $i^{\text {th }}$ iteration, and f_{i-1} denote the flow routed so far. Let $\alpha(i-1)$ denote the minimum distance between terminals in metric l_{i-1}, and $D(i-1)$ denote the volume of the system. Let P be a path of length
$\alpha(i-1)$ connecting some terminal pair. We push one unit of flow along P, and for edge $e \in P$, set $l_{i}(e)=l_{i-1}(e)(1+\epsilon)$. We stop at the first time t such that $\alpha(t) \geq 1$.

Essentially, the algorithm finds the path with minimum capacity violation and pushes one unit of flow along it. This path is the shortest path using a length function which is exponential in the violation. Note that f_{t} does not satisfy capacity constraints and is therefore infeasible.
Initially, we set $l_{0}(e)=\delta$ for all edges. We will choose δ later. Let β denote the optimal value of the dual.
Note that $\alpha(0) \leq \delta n$. Also note that $f_{i}=i$.

1. Show that $D(i)=D(0)+\epsilon \sum_{j=1}^{i} \alpha(j-1)$.
2.Consider the length function $l_{i}-l_{0}$, and let $\alpha\left(l_{i}-l_{0}\right)$ denote the length of the shortest path from any source to the corresponding sink under this length function. Show that $\beta \leq \frac{D(i)-D(0)}{\alpha\left(l_{i}-l_{0}\right)}$, and conclude that $\alpha(i) \leq \delta n+\frac{D(i)-D(0)}{\beta}$.
3.Now show that $\alpha(i) \leq \delta n(1+\epsilon / \beta)^{i}$. Conclude that $\alpha(i) \leq \delta n e^{\epsilon i / \beta}$.
2. Finally, show that $f_{t}=t \geq \frac{\beta \ln (\delta n)^{-1}}{\epsilon}$.

Problem 3-4. Feasible Flow: The algorithm described above could easily violate capacities. Note that whenever we route one unit of demand through an edge e, we increase its length by a factor of $1+\epsilon$.
1.Using the fact that $l_{0}(e)=\delta$, and t is the first time instant for which $\alpha(t) \geq 1$, show that the total flow through e is at most $\log _{1+\epsilon} \frac{1+\epsilon}{\delta}$.
2.Show that $\frac{f_{t}}{\log _{1+\epsilon} \frac{1+\epsilon}{\delta}}$ is a feasible flow.

Problem 3-5. Approximation Ratio: Let γ denote the ratio between the optimal dual solution and the flow we obtain, that is $\gamma=\frac{\beta}{f_{t}} \log _{1+\epsilon} \frac{1+\epsilon}{\delta}$. Show that for $\delta=(1+\epsilon)((1+\epsilon) n)^{-1 / \epsilon}, \gamma \leq(1-\epsilon)^{-2}$.
Problem 3-6. Running Time: Show that the algorithm described above computes a $(1-\epsilon)^{-2}$ approximation to max multicommodity flow in time $O\left(\left(\frac{m}{\epsilon^{2}} \log n\right) k T_{\mathrm{sp}}\right)$, where T_{sp} is the time taken to compute single source shortest paths.

Problem 3-7. Optional: Suppose we remove the unit capacity assumption. We modify the algorithm as follows. As before, let P be the shortest path in metric l_{i-1}. Let u denote the minimum capacity edge along this path. We push u units of flow along this path, and for edge e along this path, set $l_{i}(e)=l_{i-1}(e)(1+\epsilon u / u(e))$. We terminate at the first time t such that $\alpha(t) \geq 1$. The values $l_{0}(e)$ are set as before. Note that f_{i} is no longer equal to i. Show that after appropriate scaling of the flow and choice of δ, this algorithm produces a $(1-\epsilon)^{-2}$ approximation to maximum multicommodity flow.

